

Flavio Daniel Baran

Avaliação de uma Floresta de Eucaliptos na Presença de um Mercado de Certificados para Reduções de Emissões de Carbono: Uma Abordagem por Opções Reais

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia de Produção do Departamento de Engenharia Industrial da PUC-Rio.

Orientador: José Paulo Teixeira

Rio de Janeiro Março de 2005

Flavio Daniel Baran

Avaliação de uma Floresta de Eucaliptos na Presença de um Mercado de Certificados para Reduções de Emissões de Carbono: Uma Abordagem por Opções Reais

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Engenharia de Produção do Departamento de Engenharia Industrial da PUC-Rio. Aprovada pela comissão examinadora abaixo assinada.

Prof. José Paulo Teixeira

Orientador

Departamento de Engenharia Industrial – PUC-Rio

Prof. Carlos Patrício Samanez

Departamento de Engenharia Industrial – PUC-Rio

Prof. Tara Keshar Nanda Baidya

Departamento de Engenharia Industrial – PUC-Rio

Prof. José Eugênio Leal

Coordenador Setorial de Pesquisa e Pós-Graduação do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 16 de março de 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Flavio Daniel Baran

Graduou-se em Engenharia Eletrônica pela Universidade Federal do Rio de Janeiro em 1999. Trabalhou na Ecole d'Ingénieurs de Bienne, na Suíça, e, de volta ao Brasil, na Alcatel Telecomunicações. No mestrado, foi agraciado com bolsa de desempenho acadêmico da PUC-Rio.

Ficha catalográfica

Baran, Flavio Daniel

Avaliação de uma floresta de eucaliptos na presença de um mercado de certificados para reduções de emissões de carbono : uma abordagem por opções reais / Flavio Daniel Baran ; orientador: José Paulo Teixeira. — Rio de Janeiro : PUC-Rio, Departamento de Engenharia Industrial, 2005.

112 f.: il.; 29,7 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Industrial.

Inclui referências bibliográficas

1. Engenharia Industrial - Teses. 2. Opções reais. 3. Créditos de carbono. 4. Análise de investimentos. 5. Finanças corporativas. I. Teixeira, José Paulo. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Industrial. III. Título.

CDD: 658.5

Agradecimentos

A meus pais, por tudo.

Ao Renato, à Cecília e à Deise, pelo apoio, atenção e carinho.

Ao professor José Paulo Teixeira, pela amizade e orientação.

À CAPES e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Aos meus colegas do mestrado da PUC-Rio, em especial a Luciana, Fábio, André, Samir, Rodrigo e Suzana, pelo companheirismo ao longo do curso.

Aos professores do departamento, em especial aos professores Tara Baidya, Carlos Patrício Samanez e Leonardo Lima.

Ao professor Pierre Lasserre, da Universidade de Quebec em Montreal (UQAM), que tão prontamente se dispôs a esclarecer alguns pontos de seu artigo.

Aos funcionários do departamento, sempre dispostos a ajudar.

A todos os amigos e familiares que, de uma forma ou de outra, me estimularam ou me ajudaram.

Resumo

Baran, Flavio Daniel. Avaliação de uma Floresta de Eucaliptos na Presença de um Mercado de Certificados para Reduções de Emissões de Carbono: Uma Abordagem por Opções Reais. Rio de Janeiro, 2005. 112p. Dissertação de Mestrado — Departamento de Engenharia Industrial, Pontificia Universidade Católica do Rio de Janeiro.

A existência de um mercado para reduções de emissões de gases de efeito estufa cria uma nova variável a ser considerada na avaliação econômica de empreendimentos florestais: a absorção de CO₂. O seqüestro desse gás gera um fluxo de dividendos que se transforma em uma fonte adicional de receita, influenciando as decisões gerenciais tomadas pelo administrador florestal. O presente trabalho estuda como se dá essa influência sobre o melhor momento de se efetuar o corte das árvores. O empreendimento florestal estudado é uma floresta de eucaliptos, explorada em função de sua madeira e cuja função de crescimento é conhecida. O preço pelo qual pode ser vendida a madeira varia estocasticamente, não podendo ser previsto, enquanto que um certificado correspondendo a uma tonelada de CO₂ removido é negociado em um mercado próprio a um preço que é considerado como sendo constante e exógeno. Todos os outros parâmetros envolvidos são constantes e conhecidos. Diante do preço de mercado, incerto, o administrador pode tomar três decisões: derrubar a floresta, esperar ou abandonar o negócio. Devido às características desse tipo de empreendimento, a Teoria de Opções Reais mostrou-se a metodologia mais adequada a ser usada.

Palavras-chave

Opções reais; créditos de carbono; mercado de carbono; análise de investimentos; finanças corporativas.

Abstract

Baran, Flavio Daniel. Valuation of an Eucalyptus Stand Under the Existence of a Market for Certified Carbon Emission Reductions: A Real Options Approach. Rio de Janeiro, 2005. 112p. M.Sc. Dissertation – Departamento de Engenharia Industrial, Pontificia Universidade Católica do Rio de Janeiro.

The existence of a market for certified greenhouse gases emission reductions creates a new variable to take into account in economical valuation of forest enterprises: the CO₂ absorption. The sequestration of this gas generates a dividend flow which becomes an extra revenue, having influence in the managerial decisions taken by the forest' manager. This work studies the effects caused by this influence over the optimal rotation age of the stand. The forest studied is an Eucalyptus stand, explored due to its timber and whose growth curve is known. The stumpage price varies stochastically and cannot be predicted, while a certificate corresponding to one ton of sequestered CO₂ is traded in a specific market at a price considered constant and exogenous. All the other parameters involved are constant and know. Facing the uncertain stumpage market price, the manager can make three possible decisions: to harvest, wait or abandon. Due to the characteristics of this kind of activity, the Real Options Theory has shown to be the most suitable to be used in this case.

Keywords

Real options; carbon credits; carbon market; investment analysis; corporate finance.

Aquele que não aumenta os seus conhecimentos os diminui.

Sumário

1 Introdução	16
1.1. Objetivos	16
1.2. Considerações Iniciais	17
1.3. O Protocolo de Quioto	19
1.3.1. Comércio de Emissões	20
1.3.2. Comércio Internacional de Emissões (CIE)	21
1.3.3. Implementação Conjunta (IC)	21
1.3.4. O Mecanismo de Desenvolvimento Limpo (MDL)	22
1.3.5. Atividades de Uso da Terra, Mudança no Uso da Terra	
e Florestas	23
1.4. Antecipação de Alguns Resultados	25
1.5. Relevância para o País	26
2 Base Teórica	28
2.1. Processos Estocásticos	28
2.1.1. Propriedade e Processo de Markov	29
2.1.2. Processo de Wiener ou Movimento Aritmético Browniano (MAB)	29
2.1.3. Processo de Wiener Generalizado ou Movimento Browniano com	1
Drift	30
2.1.4. Movimento Browniano Generalizado ou Processo de Itô	31
2.1.5. Movimento Geométrico Browniano (MGB)	31
2.1.6. Processo de Reversão à Média ou de Ornstein-Uhlenbeck	32
2.1.7. Lema de Itô	33
2.2. Métodos Numéricos de Avaliação de Ativos	34
2.2.1. Modelo Binomial	34
2.2.2. Método das Diferenças Finitas	35
2.2.3. Simulação de Monte Carlo (SMC)	40
2.3. Técnicas de Otimização Dinâmica sob Incerteza	42
2.3.1. Programação Dinâmica	42

2.3.2. Direitos Contingenciais (<i>Contingent Claims Analysis</i>)	44
3 Opções Reais	47
3.1. A Abordagem Tradicional – Método do Valor Presente Líquido	47
3.2. A Abordagem de Opções Reais	49
3.3. Tipos de Opções Reais	51
3.3.1. Opção de Adiar o Investimento	51
3.3.2. Opção de Expandir	52
3.3.3. Opção de Contrair	52
3.3.4. Opção de Suspender Temporariamente	53
3.3.5. Opção de Abandono ou Troca de Uso	53
4 Discussão de Trabalhos Anteriores	54
4.1. Modelos de Determinação da Idade Ótima de Corte e	
Valor da Terra	54
4.2. Efeito Estufa e Créditos de Carbono	61
5 Modelo e Resultados	71
5.1. Modelos Florestais	71
5.2. Modelo Teórico	73
5.3. Resolução	78
5.4. Parâmetros	82
5.5. Resultados	84
6 Conclusões e Recomendações	96
6.1. Conclusões	96
6.2. Sugestões para Trabalhos Futuros	98
7 Referências bibliográficas	99
Apêndice A: Condição de Primeira Ordem para a Rotação Ótima no	
Modelo de Ariste-Lasserre	106

Apêndice B: Condição de Primeira Ordem para a Rotação Ótima no	
Modelo de Faustmann a Partir do Modelo de Ariste-Lasserre	108
Apêndice C: Maximização do Valor Esperado da Terra	110
Apêndice D: Países Anexo I e Países Anexo B	112

Lista de figuras

Figura 1: Concentração de CO ₂ medida em Mauna Loa	
(Havaí) desde 1958	18
Figura 2: Árvore binomial de três passos	34
Figura 3: Representação gráfica do <i>grid</i> do método	
das diferenças finitas	36
Figura 4: Evolução da carteira ϕ para dois possíveis cenários	45
Figura 5: Crescimento e corte no modelo determinístico de Faustmann	54
Figura 6: Árvore binomial com 1 passo	74
Figura 7: Relação entre o preço da madeira e a idade de corte	84
Figura 8: Relação entre <i>P</i> e a idade de corte para vários	
valores de Z e λ =1 (modelo A-L)	86
Figura 9: Relação entre <i>P</i> e a idade de corte para vários	
valores de Z e λ =0 (modelo A-L)	87
Figura 10: Relação entre λ e a idade de corte para vários	
valores de Z e P=15	88
Figura 11: Relação entre λ e a idade de corte para vários	
valores de Z e P=40	88
Figura 12: Relação entre λ e a idade de corte para vários	
valores de Z e P=100	89
Figura 13: Relação entre λ e a idade de corte para vários	
valores de <i>P</i> e <i>Z</i> =1	90
Figura 14: Relação entre λ e a idade de corte para vários	
valores de P e Z=3	90
Figura 15: Relação entre λ e a idade de corte para vários	
valores de P e Z=5	91

Lista de tabelas

Tabela 1: Analogia entre uma opção financeira e	
uma opção de investir em um projeto	49
Tabela 2: Custo de manutenção ao longo da rotação	82
Tabela 3: Valor da floresta e idade de corte de acordo com P	
para o modelo de Faustmann	91
Tabela 4: Valor da floresta e idade de corte de acordo com P	
para λ =1 e Z =1 para o modelo A-L	92
Tabela 5: Valor da floresta e idade de corte de acordo com P	
para λ =0 e Z=1 para o modelo A-L	93
Tabela 6: Valor da floresta e idade de corte com P=\$400	
para os modelos de Faustmann e Ariste-Lasserre com Z=1	94
Tabela 7: Preço-limite para diferentes custos de regeneração	95

Lista de abreviaturas e siglas

AAU Assigned Amount Unit
A-L Modelo de Ariste-Lasserre

BM&F Bolsa de Mercadorias & Futuros BVRJ Bolsa de Valores do Rio de Janeiro CBOE Chicago Board Options Exchange

CCX Chicago Climate Exchange

CDIAC Carbon Dioxide Information Analysis Center

CER Certificado de Emissões Reduzidas

CFC Clorofluorcarboneto

CH₄ Metano

CIE Comércio Internacional de Emissões

CIMGC Comissão Interministerial de Mudança Global no Clima

cm Centímetro

CO₂ Dióxido de carbono

COP/MOP Conference of the Parties/Meeting of the Parties

EDP Equação diferencial parcial EUA Estados Unidos da América FGV Fundação Getúlio Vargas g/cm³ Grama por centímetro cúbico

GEE Gases de efeito estufa

ha Hectare

HFC Hidrofluorcarbono

IC Implementação conjunta ICA Incremento corrente anual IMA Incremento médio anual

IPCC Intergovernmental Panel on Climate Change

LSM Least-Square Monte Carlo

LULUCF Land-Use, Land-Use Change and Forestry

m³/ha Metro cúbico por hectare

MAB Movimento aritmético browniano

MBRE Mercado Brasileiro de Reduções de Emissões

MDIC Ministério do Desenvolvimento, Indústria e Comércio

Exterior

MDL Mecanismo de desenvolvimento limpo MGB Movimento geométrico browniano

N₂O Óxido nitroso

NYBOT New York Board of Trade

ONU Organização das Nações Unidas

PFC Perfluorcarbono
PIB Produto Interno Bruto

PNUMA Programa das Nações Unidas para o Meio-Ambiente

ppmv Partes por milhão por volume REO Rotação economicamente ótima RVO Rotação volumetricamente ótima SF₆ Hexafluoreto de enxôfre SMC Simulação de Monte Carlo TIR Taxa interna de retorno ton/m³ Tonelada por metro cúbico TOR Teoria das Opções Reais UER Unidade de Emissão Reduzida

UNFCC United Nations Framework Convention on Climate Change

US\$ Dólar americano

VET Valor esperado da terra

VP Valor presente

VPL Valor presente líquido

VPL_E Valor presente líquido expandido VPL_S Valor presente líquido estático WMO World Meteorological Organization

μm Micrometro